
Programmable Temporal Isolation
through Variable-Bandwidth Servers∗

Silviu S. Craciunas, Christoph M. Kirsch, Hannes Payer, Harald Röck, and Ana Sokolova
Department of Computer Sciences

University of Salzburg, Austria
Email: firstname.lastname@cs.uni-salzburg.at

Abstract—We introduce variable-bandwidth servers
(VBS) for scheduling and executing processes under pro-
grammable temporal isolation. A VBS is an extension
of a constant-bandwidth server where throughput and
latency of process execution can not only be controlled to
remain constant across different competing workloads but
also to vary in time as long as the resulting bandwidth
stays below a given bandwidth cap. We have designed
and implemented a VBS-based EDF-style constant-time
scheduling algorithm, a constant-time admission test, and
four alternative queue management plugins which in-
fluence the scheduling algorithm’s overall temporal and
spatial complexity. Experiments confirm the theoretical
bounds in a number of microbenchmarks and demonstrate
that the scheduler can effectively manage in constant time
any number of processes up to available memory while
maintaining response times of individual processes within a
bounded range. We have also developed a small-footprint,
bare-metal virtual machine that uses VBS for temporal
isolation of multiple, concurrently running processes exe-
cuting real code.

I. INTRODUCTION

Virtualization has always been a fascinating topic in
systems research and more recently lead to impressive
success stories in industry. The key benefit of virtual-
ization is isolation. Software processes and even whole
systems running on virtualized hardware may be effec-
tively isolated from the specifics of real hardware but
also from each other when sharing resources such as
CPUs, memory, and I/O devices. However, virtualization
typically comes at the expense of increasing the already
complex temporal dependencies when sharing resources
even further.

In this paper, we show that virtualization not only
enables the well-known benefits of traditional CPU,
memory, and I/O isolation but may also have the poten-
tial for temporally isolating access to shared resources.
This is particularly relevant when using virtualization

∗Supported by the EU ArtistDesign Network of Excellence on
Embedded Systems Design and the Austrian Science Funds P18913-
N15 and V00125.

in time-sensitive application areas such as control and
automation but also mobile computing. Intuitively, the
execution of a piece of sequential program code of
a process (called action) is temporally isolated if the
response times of the code as well as the variance of
the response times (jitter) are solely determined by the
code itself and its inputs, independently of any other,
concurrently executing actions and the system on which
the actions execute. The response time of an action is the
duration from the time instant when process execution
reaches the beginning of the action (arrival) until the time
instant when process execution reaches the beginning
of the next action (termination). In this model, process
execution corresponds to a possibly infinite sequence of
actions. We say that temporal isolation is programmable
if response times and jitter can be modified by processes,
at least within some platform-dependent range.

We introduce the notion of variable-bandwidth servers
(VBS), which enable programmable temporal isolation
of processes. VBS are a generalized form of constant-
bandwidth servers (CBS) [1]. Given a pair (λ, π) called
virtual periodic resource [2], where λ is the limit and
π is the period of the resource, a CBS executes a
single process for λ units of time every π units of
time. In other words, a CBS discretizes or “samples”
the progress of time at a “sampling frequency” of one
unit of time over π. The virtual periodic resource of a
CBS is fixed and therefore determines a constant server
bandwidth (and sampling frequency). Multiple CBS are
scheduled using earliest-deadline-first (EDF) scheduling
with deadlines equal to the servers’ periods. New servers
and thus processes can simply be admitted to the system
as long as the sum of the bandwidth of all servers is less
than the system’s capacity.

The drawback of a CBS is that its resource’s period
and limit cannot be changed. For example, a process may
sometimes need to execute a small portion of its code
with lower latency than the rest of its code and therefore
temporarily require a shorter period. This is why we
need VBS. A VBS merely has a fixed bandwidth cap
but can otherwise switch to any virtual periodic resource

with a capacity less or equal to its bandwidth cap. In
particular, a VBS can switch to any resource periods and
limits as long as the resulting bandwidth does not exceed
the bandwidth cap. Switching virtual periodic resources
needs to follow a particular sequence of steps to avoid
ever exceeding the bandwidth cap so that the admission
of new servers can be handled in a similar fashion as in
a CBS system, simply by checking that the sum of the
bandwidth caps of all servers remains less or equal to
the system’s capacity. A process running on a VBS can
initiate a switch from one action to the next.

Despite adapting to varying throughput and latency
requirements, switching to different periods allows to
trade off scheduling overhead and temporal isolation
at runtime. Smaller periods and thus higher sampling
frequencies better isolate servers because their response
times for executing a given piece of code are better
maintained across larger sets of server workloads, at the
expense of higher administrative overhead through more
scheduler invocations.

The key contribution of this paper is the design and
implementation of a VBS-based system consisting of
a constant-time scheduling algorithm, a constant-time
admission test, and four alternative queue management
plugins based on lists, arrays, matrices, and trees. The
plugins trade off time and space complexity dominating
the overall complexity of the implementation.

Our experiments with a high-performance, uniproces-
sor implementation of the scheduling algorithm and the
plugins confirm the theoretical time and space bounds
in a number of microbenchmarks. VBS workloads were
simulated and thus not created by executing real code.
In order to obtain real world benchmarks our implemen-
tation may readily be integrated into an existing kernel
or virtual machine. However, we chose to develop from
scratch a small-footprint, bare-metal virtual machine
called Tiptoe [3] using VBS for scheduling in order
to keep system complexity manageable and have full
control over all relevant aspects including memory and
I/O management. Our prototype implementation is meant
to support mobile computing platforms. So far, it runs
on an XScale 400MHz-processor with 64MB of RAM
and virtualizes an AVR microcontroller. With the proto-
type, we have performed a bare-metal microbenchmark
when executing AVR code. The experiment shows that
VBS in Tiptoe effectively provides temporal isolation of
multiple, concurrently running AVR instances.

The structure of the rest of the paper is as follows.
We start by a discussion of related work in Section II.
We then describe VBS conceptually in Section III and
present the scheduling algorithm in Section IV. In Sec-
tion V, we briefly present the implementation complexity

under the four different choices of queue management
plugins. The results of our experiments are shown in
Section VI. In Section VII we describe the integration
of VBS into Tiptoe and report on the bare-metal exper-
iment with VBS and Tiptoe. Section VIII gathers the
conclusions.

II. RELATED WORK

Virtual periodic resources [2] are related to resource
reservations, which were introduced in [4] as CPU ca-
pacity reserves. Follow-up work [5] within the real-time
operating system Eclipse employs resource reservations
(reserves) for additional resources. The scheduling model
in [5] is very similar to ours, except that the resource
reserve is a rate or a percentage of the resource that a
process might use, and not a pair of a limit and a period.
As a consequence, there is no notion of a deadline of a
task that could be scheduled with classical algorithms.
The Rialto [6] system also considers the possibility of
multiple resources and uses an even stronger notion of
resource reserves for resource management. However,
there is no model of sequential process actions in the
Rialto system. Another scheduler using reservation sup-
port via fair queuing is SMART [7].

The work on CBS [1] is highly related to ours, as
already elaborated in the introduction. Similar to CBS,
VBS also uses an EDF-based algorithm for scheduling.
Another scheduling scheme for CBS has been developed
in [8] for the purpose of scheduling multi-threaded, real-
time and non-real-time applications running concurrently
in an open system. There is no notion of sequentiality
within a process there, i.e., no counterpart of our ac-
tions. RBED is a rate-based scheduler extending resource
reservations [9] most closely related to VBS. It also
uses EDF scheduling and allows dynamic bandwidth and
rate adjustments. RBED and VBS differ on the level of
abstraction: in VBS, processes are modeled as sequences
of actions to quantify the response times of portions of
process code, where each transition from one action to
the next marks an adjustment in bandwidth and rate.

The idea of decomposing a task into subtasks that run
sequentially has also appeared before, in the context of
fixed-priority scheduling [10], and was extended in [11]
for solving control-related issues.

Several flexible scheduling solutions have been pro-
posed that deal with the dynamic reconfiguration of task
rates. Elastic scheduling [12], [13] proposes a new task
model in conjunction with EDF, which is able to adjust
task utilization parameters by treating tasks as springs
with given elastic coefficients and constraints. The goal
of this and similar approaches, such as [14], [15], is

to handle variable execution rates and overload scenar-
ios in a flexible way by dynamically checking system
utilization and adapting task parameters. In [16], CBS
are dynamically reconfigured by redistributing processor
time using a benefit function. Flexibility in our approach
amounts to defining processes whose throughput and
latency varies in time, and therefore differs in implemen-
tation and goal from the mentioned flexible scheduling
approaches.

In the context of virtual machine monitors, XEN [17]
employs three proportional share schedulers. Borrowed
virtual time [18] is a fair share scheduler based on the
concept of virtual time, which provides low-latency sup-
port for real-time and interactive applications. SEDF [19]
is a modified version of EDF that distributes slack
time fairly where the fairness depends on the period.
Credit scheduler allows automatic load balancing of
virtual CPUs across physical CPUs. Modifications to
the SEDF scheduler to enable preferential scheduling of
I/O-intensive domains by taking into consideration the
amount of communication performed by each domain
have also been proposed [20].

Another solution for temporal isolation in real-time
systems is the strongly partitioned system concept. In
such systems tasks are grouped into partitions and
scheduled using a two-level scheduling structure [8],
[21], [22], [23]. At partition level, the tasks inside a
partition are scheduled using fixed-priority-based algo-
rithms; at system level, partitions are assigned bandwidth
and processor time in a cyclic fashion. Our system
can be seen as scheduling partitions, namely processes
correspond to partitions and inside a partition there are
sequentially released tasks. However, the scheduling goal
and methods in both cases are different.

Finally, we compare our scheduler implementation
to other work regarding scheduling complexity. By n
we denote the number of processes. The SMART [7]
scheduler’s time complexity is given by the complexity
of managing a special list and the cost of managing the
working schedule. The list requires O(n) work, which
can be reduced to O(log(n)) if tree data structures
are used. The worst-case complexity of managing the
schedule is O(n2

R), where nR is the number of some
particular active real-time tasks. In special cases this
complexity can be reduced to O(n) and O(1). The
Move-to-Rear List scheduling of the Eclipse [5] oper-
ating system implies several operations that are constant
time while in total it takes O(n), which can also be
optimized to O(log(n)) time. In the EDF-based sched-
uler of Rialto [24] the scheduling decision takes O(1)
time, but the scheduling algorithm is not compositional
and requires a pre-computation of a so-called scheduling

graph. The latest Linux 2.6 scheduler runs in O(log(n))
time. There is also an earlier O(1) version, which, like
our implementation, makes use of bitmaps to improve
performance.

III. PROCESS SCHEDULING

We work with a discrete time domain, i.e., the set of
natural numbers N is the timeline. The main ingredients
of the scheduling model are variable-bandwidth servers
(VBS) defined by virtual periodic resources and VBS-
processes composed of sequential actions.

A. VBS and Processes

A virtual periodic resource (capacity) is a pair

R = (λ, π)

where λ stands for limit and π for period. If no confusion
arises, we will say resource for virtual periodic resource.
The limit λ specifies the maximum amount of time the
resource R can be used (by a server and thus process)
within the period π. We assume that in a resource R =
(λ, π), λ ≤ π. The ratio u = λ

π is the utilization of the
resource R = (λ, π). We allow for an arbitrary set of
resources denoted by R.

A constant-bandwidth server (CBS) [1] is uniquely
determined by a virtual periodic resource R = (λ, π).
A constant-bandwidth server serves CBS-processes at
the virtual periodic resource R, that is, it lets a process
execute for λ amount of time, within each period of
length π. Hence, the process as a whole receives the
constant bandwidth of the server, prescribed by the
defining resource.

A variable-bandwidth server (VBS) is uniquely deter-
mined by the utilization ratio u of some virtual periodic
resource. The utilization ratio prescribes an upper bound
bandwidth cap. The server may execute processes that
change the resources in time, as long as the resources
have utilization less than or equal to the defining uti-
lization. The notion of a process that can be served by
a given VBS is therefore richer in structure. Note that
a VBS can serve processes with any kind of activation.
The server itself is periodic (with variable periodicity)
but the processes need not be.

A VBS-process P (u) served by a VBS with utilization
u, is a finite or infinite sequence of (process) actions,

P (u) = α0α1α2 . . .

for αi ∈ Act, where Act = N × R. An action α ∈
Act is a pair α = (l, R) where l standing for load is a
natural number, which denotes the exact amount of time
the process will perform the action on the resource R,

and R = (λ, π) has utilization less than or equal to the
utilization of the VBS, that is λ

π ≤ u. If no confusion
arises, we call VBS-processes simply processes, and we
may also just write P instead of P (u). By P we denote
a finite set of processes under consideration.

Note that any action of a VBS-process is itself a finite
CBS-process, hence a VBS-process can be seen as a se-
quential composition of CBS-processes. Moreover, note
that the notion of load simplifies the model definition,
although in the implementation it is in general not known
a-priori.

Given a set R = {(1s, 2s), (1s, 4s), (1s, 3s)} of
resources, we consider a finite process P (0.5) that first
does some computation for 3s with a virtual periodic re-
source (1s, 2s), then it works on allocating/deallocating
memory objects of size 200KB, which takes 2s with
the resource (1s, 4s), then it produces output of size
100KB on an I/O device in 1s with (1s, 3s), then again
it computes, now for 2s, with (1s, 2s) again. We can
represent P as a finite sequence

P (0.5) = α0α1α2α3

= (3, (1, 2))(2, (1, 4))(1, (1, 3))(2, (1, 2)).

on a 1s-timeline. This process corresponds to (can be
served by) a VBS with utilization u = 0.5 (or more).

B. Scheduling

A schedule for a finite set of processes P is a partial
function

σ : N ↪→ P

from the time domain to the set of processes, that assigns
to each moment in time a process that is running in the
time interval [t, t + 1). Here, σ(t) is undefined if no
process runs in [t, t + 1). Due to the sequential nature
of the processes, any scheduler σ uniquely determines a
function σR : N ↪→ P ×R which specifies the resource
a process uses while being scheduled.

A schedule respects the resource capacity if for any
process P ∈ P and any resource R ∈ R, with R =
(λ, π) we have that for any natural number k ∈ N

|{t ∈ [kπ, (k + 1)π) | σR(t) = (P,R)}| ≤ λ.

Hence, if the schedule respects the resource capacity,
then the process P uses the resource R at most λ units
of time per period of time π, as specified by its capacity.

Given a schedule σ for a set of processes P , for each
process P ∈ P and each action αi = (li, Ri) that appears
in P we distinguish four absolute moments in time:
• Arrival time ai of the action αi is the time instant at

which the action arrives. We assume that ai equals

the time instant at which the previous action of
the same process has finished. The first action of
a process has zero arrival time.

• Completion time ci of the action αi is the time
at which the action completes its execution. It is
calculated as

ci = min {c ∈ N | li = |{t ∈ [ai, c) | σ(t) = P}|} .
• Finishing or termination time fi of the action αi is

the time at which the action terminates or finishes its
execution. We always have fi ≥ ci. The difference
between completion and termination is specified
by the termination strategy of the scheduler. The
process P can only invoke its next action if the
previous one has been terminated. In the schedul-
ing algorithm we adopt the following termination
strategy: an action is terminated at the end of the
period within which it has completed. Adopting this
termination strategy is needed for the correctness
of the scheduling algorithm and the validity of the
admission (schedulability) test.

• Release time ri is the earliest time when the action
αi can be scheduled, ri ≥ ai. If not specified
otherwise, by the release strategy of the scheduler,
we take ri = ai. In the scheduling algorithm we
will consider two release strategies, which we call
early and late strategy.

Using these notions, we define response time under the
scheduler σ of the action α denoted by si, as the dif-
ference between the finishing time and the arrival time,
i.e., si = fi − ai. Note that this definition of response
time is logical in the sense that whenever possible side
effects of the action should take effect at termination
but not before. In the traditional (non-logical) definition,
response time is the time from arrival to completion,
decreasing response time (increasing performance) at the
expense of increased jitter (decreased predictability).

Assume that response bounds bi are given for each
action αi of each process P in a set of processes P . The
set P is schedulable with respect to the given bounds
if and only if there exists a schedule σ : N ↪→ P that
respects the resource capacity and for which the actual
response times do not exceed the given response bounds,
i.e., si ≤ bi for all involved actions αi.

C. Schedulability Result

Given a finite set P = {Pi(ui) | 1 ≤ i ≤ n} of
processes with corresponding actions αi,j = (li,j , Ri,j)
for j ≥ 0, such that Pi(ui) = αi,0αi,1 . . . corresponds to
a VBS with utilization ui, we define response bounds

bi,j =
⌈
li,j
λi,j

⌉
πi,j + πi,j − 1 (1)

where Ri,j = (λi,j , πi,j) with li,j , Ri,j , λi,j , and πi,j
being as before the load, the resource, the limit, and the
period for the action αi,j , respectively. Since an action
αi,j executes at most λi,j of its load li,j per period of
time πi,j ,

⌈
li,j

λi,j

⌉
is the number of periods the action

needs in order to complete its load. In addition, in the
response bound we account for the time in the period
in which the action arrives, which in the worst case is
πi,j − 1 if it arrives right after a period instance.

The next schedulability/admission result justifies the
definition of the response bounds and shows the correct-
ness of our scheduling algorithm.

Proposition 1: Given a set of processes P = {Pi(ui) |
1 ≤ i ≤ n}, as above, if∑

i∈I
ui ≤ 1, (2)

then the set of processes P is schedulable with respect
to the resource capacity and the response bounds (1).

Hence, it is enough to test whether the sum of the
utilization (bandwidth) cap of all processes is less than
one. The test is finite even though the processes may
be infinite because each process is a VBS-process. In
addition, the test is computable even if the actual loads
of the actions are unknown, as it is often the case
in practice. Hence, the standard utilization-based test
for CBS-processes, holds also for VBS-processes. The
test runs in constant time, meaning that whenever a
new VBS-process enters the system, it is decidable in
constant time whether it can be admitted and scheduled.
The proof of Proposition 1 can be found in the full
version technical report [25].

Let us still mention the two release strategies and
elaborate the scheduling method via an example. In the
late strategy, the release time of an action is delayed
until the next period instance (of its resource) after the
arrival time of the action. In the early strategy, the release
time is equal to the arrival time, however, the limit of
the action for the current period is adjusted so that it
does not exceed its utilization in the remaining part of
the current period. Our late strategy corresponds to the
deferrable server [26] from classical scheduling theory,
and the early strategy is similar in goal to the polling
server [27]: it improves the average response times by
servicing tasks that arrive during the current period.

Figure 1 presents the scheduling of an action α =
(5s, (2s, 4s)) with load of 5s, arriving at time 10s, in
both strategies. The resource used by the action has a
period of 4s and a limit of 2s. In the late strategy,
the action is only released at time 12s, which is the
next period instance after the actual arrival time. Then
it takes three more periods for the action to finish. In

ms

24 ms

20 24

ai ri fi
ci

ai = ri

8 16 20

8 16

ci fi

late
strategy

1210

1210

early
strategy

Fig. 1. Scheduling an action α = (5s, (2s, 4s))

the early strategy, the action is released at once, but in
the remaining time of the current period (2s) the limit is
adjusted to 1s, so that the utilization remains 0.5. In this
situation the scheduled response time in the early release
strategy is one period shorter than in the late release
strategy. In both cases the action splits into a sequence
of three tasks that are released in the consecutive periods.
In the early strategy these tasks are released at time
10s, 12s, and 16s; have deadlines 12s, 16s, and 20s;
and durations 1s, 2s, and 2s, respectively. In the late
strategy the tasks are released at times 12s, 16s, and
20s; have deadlines 16s, 20s, and 24s; and durations of
2s, 2s, and 1s, respectively. Our scheduling result shows
schedulability of such sets of (sequences of) tasks using
EDF, cf. [25].

Recall that si,j denotes the scheduled response time of
the action αi,j . The upper bound on si,j , i.e., si,j = bi,j ,
if the schedulability test holds, occurs if the action arrives
right after a new period begins, and can be reached in
both release strategies. The scheduled response times
also have a lower bound, that varies in both strategies.
For the late release strategy we have

si,j ≥
⌈
li,j
λi,j

⌉
πi,j

and it is achieved if the action arrives at a period
instance. Therefore the response-time jitter for the late
release strategy is at most πi,j−1. For the early strategy,
a more careful analysis provides lower and more accurate
upper bounds. Let k be the smallest natural number such
that ⌊

k
λi,j
πi,j

⌋
≥ li,j −

⌊
li,j
λi,j

⌋
λi,j .

Then k ∈ [0, πi,j]. The definition of k guarantees that
the load of the action can be performed in

⌊
li,j

λi,j

⌋
πi,j+k

time units. Now we give more precise lower and upper
bounds for the early release strategy. If the action arrives
early enough so that it can save one period of execution,
i.e., ai,j ≤ njπi,j−k where nj is such that ai,j ∈ ((nj−
1)πi,j , njπi,j], then

si,j ≥
⌊
li,j
λi,j

⌋
πi,j + k ≥

⌊
li,j
λi,j

⌋
πi,j

and
si,j ≤

⌊
li,j
λi,j

⌋
πi,j + πi,j − 1.

Otherwise, if ai,j > njπi,j − k, in which case k > 0,
then no time can be saved

si,j ≥
⌈
li,j
λi,j

⌉
πi,j + (k − 1) ≥

⌈
li,j
λi,j

⌉
πi,j

and
si,j ≤

⌈
li,j
λi,j

⌉
πi,j + πi,j − 1.

In both cases the jitter is bounded by πi,j−1. Note that,
if response time is defined as the time from arrival to
completion, then the (non-logical) jitter is bounded by
2(πi,j − 1) with both strategies.

The schedulability/admission test is a sufficient condi-
tion for schedulability. A more precise or even necessary
condition is an interesting target for future work but may
require incorporating details of process implementations
and interactions.

IV. SCHEDULING ALGORITHM

In this section we describe the scheduling algorithm
which follows the proof of Proposition 1. At any relevant
time t, our system state is determined by the state of each
process. A process may be blocked, ready, or running as
depicted in Figure 2. By Blocked, Ready, and Running
we denote the current sets of blocked, ready, and running
processes, respectively. These sets are ordered: Blocked
is ordered by the release times, Ready is ordered by
deadlines, and Running is either empty (for an idle
system) or contains the currently running process of the
system. Thus,

P = Blocked ∪ Ready ∪ Running

and the sets are pairwise disjoint. Additionally each
process is represented by a tuple in which we keep track
of the process evolution. For the process Pi we have a
tuple

Pi = (i, j, di, ri, lci , λ
c
i)

where i is the process identifier, j stores the identifier of
its current action αi,j , di is the current deadline (which
is not the deadline for the entire action, but rather an
instance of the action period πi,j), ri is the next release
time, lci is the current load, and λci is the current limit.
The scheduler also uses a global time value ts which
stores the previous time instant at which the scheduler
was invoked.

Given n processes P1, . . . , Pn, as defined in the pre-
vious section, initially we have

Blocked = {P1, . . . , Pn}, Ready = Running = ∅.

ready runningblocked

deadline
earliest

release

preemption
due to release

completion/limit used

Fig. 2. Process states

At specific moments in time, including the initial time
instant, we perform the following steps:

1. Update process state for the process in Running.
2. Move processes from Blocked to Ready.
3. Update the set Running.

We discuss each step in more detail below.

1. If Running = ∅, i.e., the system was idle, we skip
this step. Otherwise, let Pi be the process in Running
at time t. We differentiate three reasons for which Pi is
preempted at time t: completion, limit, and release.

Completion: Pi completes the entire work related
to its current action αi,j = (li,j , Ri,j). If we have reached
process termination, i.e., there is no next action, we
have a zombie process and remove it from the system.
Otherwise, j ← j + 1 and the current action becomes
αi,j+1 = (li,j+1, Ri,j+1) with the resource capacity
(λi,j+1, πi,j+1). The current load lci becomes li,j+1.

If Ri,j+1 = Ri,j , Pi is moved to Ready, its deadline
di, and release time ri remain unchanged, and we
subtract the work done from λci , λ

c
i ← λci − (t− ts).

If Ri,j+1 6= Ri,j , we have currently implemented two
release strategies handling the process, following the
proof of Proposition 1. But first we take care of the
termination strategy. Let m ∈ N be a natural number
such that

t ∈ ((m− 1)πi,j ,mπi,j].

According to our termination strategy, the action αi,j is
terminated at time mπi,j which is the end of the period
in which the action has completed. Now let k ∈ N be a
natural number such that

mπi,j ∈ ((k − 1)πi,j+1, kπi,j+1].

The first strategy, called late release strategy, calculates
ri, the next release time of Pi, as the start of the next
period of Ri,j+1 and its deadline as the start of the
second next period,

ri ← kπi,j+1, di ← (k + 1)πi,j+1.

The new current limit becomes λi,j+1 and Pi is moved
to Blocked.

The second strategy, called early release strategy, sets
the release time to the termination time and the deadline
to the end of the release-time period

ri ← mπi,j , di ← kπi,j+1

and calculates the new current limit for Pi, as

λci ←
⌊

(di − ri)
λi,j+1

πi,j+1

⌋
.

The process Pi is moved to Blocked.
Limit: Pi uses all of the current limit λci for the

resource Ri,j . In this case we update the current load,
lci ← lci − (t− ts), and

λci ← λi,j , ri ← kπi,j , di ← (k + 1)πi,j ,

with k ∈ N such that t ∈ ((k− 1)πi,j , kπi,j]. With these
new values Pi is moved to Blocked.

Release: If a process is released at time t, i.e., Pm
is a process, Pm 6= Pi, with the release time rm = t, then
the priorities have to be established anew. We update the
current load and limit,

lci ← lci − (t− ts), λci ← λci − (t− ts).

The deadline for Pi is set to the end of the current period,
di ← kπi,j , with k ∈ N such that t ∈ ((k−1)πi,j , kπi,j].
Pi is then moved to Ready.

2. In the second step the scheduler chooses the processes
from Blocked which are to be released at the current
time t, i.e., {Pi | ri = t}, and moves them to the set
Ready.

3. In the third step if the Ready set is empty, the
scheduler leaves the Running set empty, thus the
system becomes idle. Otherwise, the scheduler chooses
a process Pi with the earliest deadline from Ready (in
a fair fashion) and moves it to Running.

We calculate :
• tc : the time at which the new running process
Pi would complete its entire work needed for its
current action without preemption, i.e., tc = t+ lci .

• tl : the time at which Pi consumes its current limit
for the current period of the resource Ri, i.e., tl =
t+ λci .

• tr : the next release time of any process in Blocked.
If Blocked is empty, tr =∞.

The scheduler stores the value of the current time in
ts, ts ← t, and the system lets Pi run until the time
t = min(tc, tl, tr) at which point control is given back
to the scheduling algorithm.

list array matrix/tree
time O(n2) O(log(t) + n log(t)) Θ(t)
space Θ(n) Θ(t+ n) O(t2 + n)

TABLE I
TIME AND SPACE COMPLEXITY PER PLUGIN

As stated, the algorithm uses knowledge of the load
of an action. However, in the implementation there
is a way around it (by marking a change of action
that forces a scheduler invocation) which makes the
algorithm applicable to actions with unknown load as
well, in which case no explicit response-time guarantees
are given. The complexity of the scheduling algorithm
amounts to the complexity of the plugins that manage the
ordered Blocked and Ready sets, the rest of the algorithm
has constant-time complexity.

V. IMPLEMENTATION

The scheduler implementation uses a well-defined
interface to manage a queue of ready processes and
a queue of blocked processes. The interface is imple-
mented by four alternative plugins, each with different
attributes regarding time complexity and space overhead.
Currently, the implementation, available via the Tiptoe
homepage [28], supports doubly-linked lists, time-slot
arrays of FIFO queues, as well as a time-slot matrix of
FIFO queues and a tree-based optimization of the matrix.

Table I shows the system’s time and space complex-
ities distinguished by plugin in terms of the number of
processes in the system (n), and in the period resolution,
that is, the number of time instants the system can dis-
tinguish (t). For efficiency, we use a time representation
similar to the circular time representation of [29].

The matrix- and tree-based implementations are O(1)-
schedulers since the period resolution is fixed. However,
not surprisingly, temporal performance comes at the
expense of space complexity, which grows quadratically
in period resolution for both plugins. Space consumption
by the tree plugin is significantly smaller than with the
matrix plugin if the period resolution is higher than the
number of servers. The list-based implementation runs in
quadratic time in the number of servers but only requires
constant space. The array-based implementation runs in
linear time in the number of servers but requires linear
space in period resolution. For the implementation and
complexity details on each of the plugins, we refer the
reader to the full version technical report [25].

VI. EXPERIMENTS AND RESULTS

We present results of different experiments with the
scheduler implementation, running on a 2GHz AMD64
machine with 4GB of memory.

5 0 150 250 350 450 550 650

2 0
4 0
6 0
8 0

100
120

140
160
180
200
220
240

260
280
300
320

list_max
array_max
matrix_max

(a) Maximum

5 0 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5
list_avg
array_avg
matrix_avg

(b) Average

5 0 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7 list_stdev
array_stdev
matrix_stdev

(c) Standard deviation

2
0

2
5

2
10

2
15

2
20

matrix

tree

array

list
2

5 2
8 2

11 2
14

5KB

100KB

5MB

100MB

1GB

memory usage

KB

time instants (t)

memory usage

(d) Memory usage

Fig. 3. Scheduler time and space overhead

A. Scheduler Overhead

In order to measure scheduler execution times, we
schedule 9 different sets of simulated processes with
10, 25, 50, 75, 100, 150, 250, 500, and 750 processes
each, with the number of distinguishable time instants
t in the scheduler fixed to 214 = 16384. During these
experiments the execution time of every single scheduler
invocation is measured using the software oscilloscope
tool TuningFork [30]. From a sample of one million
invocations we calculate the maximum (Figure 3(a)), the
average (Figure 3(b)), and the standard deviation (Fig-
ure 3(c)) in execution times. The x-axis of each of the
three figures represents the number of processes in the set
and the y-axis the execution time in microseconds. The
B+ tree plugin performs the same as the matrix plugin
up to 140ns, and is therefore not shown.

The execution time measurements conform to the
complexity bounds from Section V. For a low number of
processes (less than 150), all plugins perform similarly
and the scheduler needs at most 20 microseconds. On
average (Figure 3(b)), for a low number of processes
(up to 100) the list plugin is the fastest. Interestingly, on
average the array plugin is always faster than the matrix
plugin, even for a high number of processes. The reason
is that the constant overhead of the matrix operations is
higher, which can be seen in the average but not in the
maximal execution times.

The variability (jitter) of the scheduler execution can
be expressed in terms of its standard deviation, depicted
in Figure 3(c). The variability of the list and array plug-
ins increases similarly to their maximum execution times
when more than 150 processes are scheduled. The matrix
plugin, however, has a lower standard deviation for a

0 3 3 6 7 100 150 200 250 300 349

5

2 0

100

500

2000

10000

50000

200000

(a) List

0 3 3 6 5 9 8 131 180 229 278 327

5

2 0

100

500

2000

10000

50000

200000

1000000

(b) Array

0 3 3 6 5 9 8 130 179 228 276 325

5

2 0

100

500

2000

10000

50000

200000

1000000

(c) Matrix

0 7 3 146 255 365 474 584 693

5

2 0

100

500

2000

10000

50000

200000

1000000

(d) Process releases

Fig. 4. Execution times histograms

high number of processes and a higher standard deviation
for a low number of processes. This is related to the
better average execution time (Figure 3(b)) for higher
number of processes, as a result of cache effects. By
instrumenting the scheduler we discovered that bitmap
functions, e.g. setting a bit, are on average up to four
times faster with 750 processes than with 10 processes,
which suggests CPU cache effects.

The memory usage of all plugins, including the tree
plugin, for 750 processes with an increasing number of
distinguishable time instants is shown in Figure 3(d). The
memory usage of just the B+ tree is 370KB, compared
to the 1GB for the matrix plugin. In both cases up to
66MB additional memory is used for meta-data, which
dominates the memory usage of the tree plugin. The
graphs in Figure 3(d) are calculated from theoretical
bounds. However, our experiments confirm the results.

Figures 4(a), 4(b), and 4(c) highlight the different
behavior of the presented plugins when scheduling 750
processes. These figures are histograms of the scheduler
execution time and are used to highlight the distribution
of it. The x-axis represents the execution time and the y-
axis (log-scale) represents the number of scheduler calls.
For example, in Figure 4(a) there are about 50 scheduler
calls that executed for 100 microseconds during the
experiment.

The list plugin varies between 0 and 350 microsec-
onds, the array plugin between 0 and 55 microseconds,
and the matrix plugin does not need more than 20
microseconds for any scheduler execution. The execution
time histograms, especially histogram 4(a), are closely
related to the histogram of the number of processes
released during the experiment (Figure 4(d)). The x-axis

represents the number of processes and the y-axis (log-
scale) represents how many times a certain number of
processes is released. The similarity of Figure 4(a) and
Figure 4(d) indicates that the release of processes dom-
inates the execution of the scheduler for the experiment
with 750 processes.

B. Release Strategies

We have compared the two implemented release
strategies of the scheduler in experiments showing that
the early strategy improves average response times over
the late strategy both for a single process with in-
creasingly non-harmonic periods and for an increasing
number of processes with a random distribution of loads,
limits, and periods. More details and figures presenting
the results of the experiments can be found in the full
version technical report [25].

VII. VBS INTEGRATION INTO A REAL VM

Tiptoe [3] is a small-footprint, bare-metal virtual ma-
chine, which currently runs on an XScale 400MHz-
processor with 64MB RAM and uses VBS for schedul-
ing. For development purposes, we can also run Tiptoe
on Linux as a single user process. The bare-metal version
comes with its own C library, device drivers for setting
I/O pins, and a serial driver. The MMU is set up to
provide a single linear static address space. The CPU
exception code is mapped to the first physical page.
There is also a microsecond timer framework and a
1KHz timer interrupt to keep the system synchronized
with real time.

The current Tiptoe implementation interprets arbitrary
AVR code virtualizing an Atmega128 processor with
4KB RAM and 128KB Flash storage. The Tiptoe VM
schedules multiple interpreter instances using a unique
VBS for each instance. A VBS is currently configured
manually by setting its bandwidth cap in percentage of
total CPU time. The interpreter instance assigned to the
VBS may then configure any number of virtual periodic
resources with application-dependent utilization levels
below the bandwidth cap. Determining the appropriate
limits and periods, also known as the server design
problem, cf. [23], is left for future work. Each resource
is associated with a unique action, i.e., a fixed piece of
AVR code running on the interpreter instance. The AVR
code marks the switch from one action to the next by
writing a special I/O port of the virtualized Atmega128.

Context switching between interpreter instances is im-
plemented cooperatively as follows. The AVR interpreter
is invoked with a timeout determined by the VBS sched-
uler. At any time instant, the scheduler not only knows

0

20

40

60

80

100

120

 2 4 6 8 10
 0

 20

 40

 60

 80

 100

R
es

p
o

n
se

 t
im

e
(m

s)

C
P

U
 u

ti
li

za
ti

o
n

 (
%

)

Number of processes

α1
α2

CPU utilization

Fig. 5. VM experiment [3]

which instance needs to be executed next but also, by
nature of its scheduling algorithm, for how much time the
instance may execute before another scheduling decision
must be made. Interpreter preemption can therefore be
planned entirely. The AVR interpreter regularly returns
cooperatively to the scheduler after its time has elapsed.
Our bare-metal experiments have been conducted with
this version of Tiptoe [3].

Ongoing work on Tiptoe focuses on further integrating
VBS into the system as part of three research thrusts: a
hypervisor version (for efficiency and legacy support),
a byte code interpreter (for studying language-enabled
memory protection using our compact-fit memory man-
agement [31]), and I/O management (for enabling real
world experiments with our model helicopter [32]).

A. VM Experiment

We demonstrate the temporal isolation capabilities
of our scheduler as well as its support for adapting
the execution speed of portions of code to different
latency requirements. Consider a process implementing
a simple feedback controller that consists of two actions.
Action α1 is associated with the virtual periodic resource
R1 = (320µs, 3550µs) while action α2 uses the resource
R2 = (500µs, 5340µs). Latency and jitter are critical
to control systems, thus splitting a control process in
two actions improves controller performance [11]. The
process utilizes the CPU at around 9%. In order to
show temporal isolation, we increase system utilization
by starting additional processes, each utilizing the CPU
at around 10%. Note that all processes execute actual
AVR code (without performing any I/O).

Figure 5 shows the minimum, maximum, and average
response times of action α1 and α2, respectively (left
y-axis). The response time jitter of each action varies
within two periods of the virtual periodic resource used
by the respective action independently of the overall sys-
tem utilization (right y-axis). CPU utilization increases
from 9% when the measured process is the only process

in the system up to 92% when 9 additional processes
run concurrently with the measured process (x-axis).

The theoretical bound for jitter is one period assuming
zero scheduler overhead. In a real system, however, there
is an additional administrative overhead. Nevertheless,
the variance is still bounded and not influenced by the
system utilization. Giving guaranteed bounds with non-
zero scheduler overhead is a topic that we plan to pursue
as future work.

VIII. CONCLUSIONS

We have introduced variable-bandwidth servers
(VBS), and designed and implemented a VBS-
based EDF-style constant-time scheduling algorithm, a
constant-time admission test, and four alternative queue
management plugins based on lists, arrays, matrices, and
trees. Experiments confirm the theoretical bounds in a
number of microbenchmarks. We have also developed
a small-footprint, bare-metal virtual machine that uses
VBS for temporal isolation of multiple processes execut-
ing real code. An interesting direction for future work is
to study whether VBS can also control throughput and
latency of other activities of the system such as memory
and I/O management.

REFERENCES

[1] L. Abeni and G. Buttazzo, “Resource reservation in dynamic
real-time systems,” Journal of Real-Time Systems, vol. 27, no. 2,
pp. 123–167, 2004.

[2] I. Shin and I. Lee, “Periodic resource model for compositional
real-time guarantees,” in Proc. RTSS. IEEE, 2003.

[3] S. Craciunas, C. Kirsch, H. Payer, H. Röck, and A. Sokolova,
“Programmable temporal isolation in real-time and embedded
execution environments,” in Proc. IIES. ACM, 2009.

[4] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity
reserves: Operating system support for multimedia applica-
tions,” in Proc. ICMCS, 1994.

[5] J. Bruno, E. Gabber, B. Özden, and A. Silberschatz, “Move-to-
rear list scheduling: a new scheduling algorithm for providing
QoS guarantees,” in Proc. MULTIMEDIA. ACM, 1997.

[6] M. Jones, P. Leach, R. Draves, and J. Barrera, “Modular real-
time resource management in the Rialto operating system,” in
Proc. HOTOS. IEEE, 1995.

[7] J. Nieh and M. S. Lam, “The design, implementation and
evaluation of SMART: a scheduler for multimedia applications,”
in Proc. SOSP. ACM, 1997.

[8] Z. Deng, J. W.-S. Liu, L. Zhang, S. Mouna, and A. Frei, “An
open environment for real-time applications,” Journal of Real-
Time Systems, vol. 16, no. 2-3, pp. 155–185, 1999.

[9] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time and non-
real-time processes,” in Proc. RTSS. IEEE, 2003.

[10] M. G. Harbour, M. H. Klein, and J. P. Lehoczky, “Timing
analysis for fixed-priority scheduling of hard real-time systems,”
IEEE Trans. Softw. Eng., vol. 20, no. 1, pp. 13–28, 1994.

[11] A. Cervin, “Improved scheduling of control tasks,” in Proc.
ECRTS. IEEE, 1999.

[12] G. Buttazzo and L. Abeni, “Adaptive workload management
through elastic scheduling,” Real-Time Syst., vol. 23, no. 1-2,
pp. 7–24, 2002.

[13] G. Buttazzo, G. Lipari, and L. Abeni, “Elastic task model for
adaptive rate control,” in Proc. RTSS. IEEE, 1998.

[14] G. Beccari, M. Reggiani, and F. Zanichelli, “Rate modulation
of soft real-time tasks in autonomous robot control systems,”
in Proc. ECRTS, 1999.

[15] T. Nakajima, “Resource reservation for adaptive qos mapping
in real-time mach,” in Proc. WPDRTS, 1998.

[16] M. A. C. Simoes, G. Lima, and E. Camponogara, “A GA-based
approach to dynamic reconfiguration of real-time systems,” in
Proc. APRES, 2008.

[17] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. SOSP. ACM, 2003.

[18] K. J. Duda and D. R. Cheriton, “Borrowed-virtual-time (BVT)
scheduling: supporting latency-sensitive threads in a general-
purpose scheduler,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5,
pp. 261–276, 1999.

[19] I. M. Leslie, D. Mcauley, R. Black, T. Roscoe, P. T. Barham,
D. Evers, R. Fairbairns, and E. Hyden, “The design and
implementation of an operating system to support distributed
multimedia applications,” IEEE Journal of Selected Areas in
Communications, vol. 14, no. 7, pp. 1280–1297, 1996.

[20] S. Govindan, A. R. Nath, A. Das, B. Urgaonkar, and A. Sivasub-
ramaniam, “Xen and co.: communication-aware cpu scheduling
for consolidated Xen-based hosting platforms,” in Proc. VEE.
ACM, 2007.

[21] D. Kim, Y.-H. Lee, and M. Younis, “SPIRIT-µKernel for
strongly partitioned real-time systems,” in Proc. RTCSA. IEEE,
2000.

[22] D. Kim and Y.-H. Lee, “Periodic and aperiodic task scheduling
in strongly partitioned integrated real-time systems,” Comput.
J., vol. 45, no. 4, pp. 395–409, 2002.

[23] G. Lipari and E. Bini, “A methodology for designing hierarchi-
cal scheduling systems,” J. Embedded Comput., vol. 1, no. 2,
pp. 257–269, 2005.

[24] M. B. Jones, D. Roşu, and C. Roşu, “CPU reservations and time
constraints: efficient, predictable scheduling of independent
activities,” in Proc. SOSP. ACM, 1997.

[25] S. Craciunas, C. Kirsch, H. Röck, and A. Sokolova, “Real-time
scheduling for workload-oriented programming,” Department of
Computer Sciences, University of Salzburg, Tech. Rep. 2008-
02, September 2008.

[26] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable
server algorithm for enhanced aperiodic responsiveness in hard
real-time environments,” IEEE Trans. Comput., vol. 44, no. 1,
pp. 73–91, 1995.

[27] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling
for hard-real-time systems,” Journal of Real-Time Systems,
vol. 1, 1989.

[28] S. S. Craciunas, C. M. Kirsch, H. Payer, H. Röck, A. Sokolova,
H. Stadler, and R. Staudinger, “The Tiptoe system,” 2007,
http://tiptoe.cs.uni-salzburg.at.

[29] G. Buttazzo and P. Gai, “Efficient implementation of an EDF
scheduler for small embedded systems,” in Proc. OSPERT,
2006.

[30] IBM Corp., “TuningFork Visualization Tool for Real-Time
Systems,” http://www.alphaworks.ibm.com/tech/tuningfork.

[31] S. Craciunas, C. Kirsch, H. Payer, A. Sokolova, H. Stadler, and
R. Staudinger, “A compacting real-time memory management
system,” in Proc. ATC. USENIX, 2008.

[32] S. Craciunas, C. Kirsch, H. Röck, and R. Trummer, “The
JAviator: A high-payload quadrotor UAV with high-level pro-
gramming capabilities,” in Proc. GNC. AIAA, 2008.

